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Abstract

It is challenging to build socially-aware robots due
to the inherent uncertainty in the dynamics of human
behavior. To become socially-aware, robots need to
be capable of recognizing activities in their environ-
ment to make informed actions in concert with co-
present humans. In this paper, we present and vali-
date an event-based method for robots to detect syn-
chronous and asynchronous actions of humans when
working as a team in a human-social environment. Our
results suggest that our method is capable of detecting
synchronous and asynchronous actions, which a step to-
wards building socially aware robots.

Introduction
Robots are becoming a ubiquitous technology, working
alongside humans as team members in many fields, from
manufacturing and assembly processes, to assistive tech-
nologies that help people with disabilities (Wilcox, Niko-
laidis, and Shah 2012; Fasola and Mataric 2013). However,
for robots to become capable team members in human-social
environments (HSEs), they must have a clear understanding
of the people and events happening around them (Riek 2013;
Hayes, O’Connor, and Riek 2014).

In particular, robots require the ability to interpret and pre-
dict team member activities in order to inform their own ac-
tions. If a robot can make better sense of its environment,
its interactions with humans in HSEs can reach higher levels
of coordination, leading to a fluent meshing of their actions
(Hoffman and Breazeal 2007; Iqbal, Gonzales, and Riek
2014; Cakmak et al. 2011). If a robot does not understand
the activities occurring around it and the context of those
activities, then it is more likely to be error-prone, and less
likely to be accepted by co-present humans (Riek 2013).

Strides have been made in the fields of artificial intelli-
gence, robotics, and computer vision to improve robots’ un-
derstanding of their environment (Ryoo and Matthies 2013;
Sung et al. 2011). However, recognizing high-level human
actions occurring in the environment is still a difficult prob-
lem for robots due to the inherent uncertainty of the dynam-
ics within an HSE. This problem is even more difficult when
the HSE involves robots and humans in motion.
Copyright c© 2014, Association for the Advancement of Artificial
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Figure 1: A) Two humans marching synchronously, while
two mobile robots following them. B) The synchronous and
an asynchronous joint action conditions.

In human-human interaction, synchronous motion, or
joint action, is a common phenomena. Joint action is a form
of social interaction where two or more participants co-
ordinate their actions both in space and time while mak-
ing changes to their environment (Sebanz, Bekkering, and
Knoblich 2006). In the context of a human-robot interac-
tion (HRI) scenario, understanding joint action is particu-
larly important as it may improve the overall engagement of
a robot as a team member. For example, in collaborative ma-
nipulation tasks, a robot can be a more effective teammate
by being able to anticipate a co-human’s motion (Unhelkar,
Siu, and Shah 2014; Strabala et al. 2013). Similarly, to move
“in-step” with a group of people (e.g., while collaboratively
climbing, running, or dancing), a robot needs to understand
the motion of its co-humans and predict their future moves.

In this paper, we describe a novel method to automatically
detect human-human synchronous and asynchronous ac-
tions, and discuss its application and validation on a human-
robot teamwork scenario. Our method takes multiple types
of task-level events into consideration, and can detect both
synchronous and asynchronous human motion. Our method
is also robust to both static and mobile sensors, i.e., when
both the robots and humans are in motion.

Methodology
We designed an experimental scenario where two humans
and two robots performed a team activity while in motion.
The humans performed a dynamic and rhythmic activity
(marching), while the robots acted as observers. We mea-
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sured the synchronous and asynchronous actions of the hu-
man performers based on this observation by the robots.

In the experiment, the humans performed a “high march”
action, either synchronously or asynchronously, depending
upon the experimental condition. One person acted as the
leader, and marched in a consistant pace. The second person
acted as a follower, and stood to the right and approximately
two feet behind the leader (See Fig. 1-A). The follower was
instructed to march either synchronously or asynchronously
with the leader based on the scenario (See Fig. 1-B).

We used two Turtlebot robots in this experiment. Each
Turtlebot followed behind one of the human performers by
approximately two feet (See Fig. 1-A). The robots recorded
RGB and depth data from the environment using their at-
tached Kinect sensors. The Turtlebots ran the Robot Operat-
ing System (ROS) on Ubuntu Linux.

We recorded data from a total of four scenarios during
this experiment. Each marching scenario lasted approxi-
mately 35 seconds, and was timed using a stopwatch. In
the first experimental scenario, we instructed the follower
to perform the same marching pattern in synchrony with
the leader. In the second scenario, the performers marched
asynchronously for entire duration of the scenario (marching
with opposite steps from the leader). For the third scenario,
the follower started marching synchronously with the leader.
After 12 seconds of marching, we instructed the follower to
become asynchronous with the leader, then to again march
synchronously after 24 seconds. For the fourth scenario, we
instructed the follower to perform the same actions as the
third scenario, but in reverse order.

We first detected the feet positions of the human marchers
from the recorded RGB data of the mobile robots. We at-
tached a unique small square of colored paper to the per-
formers’ left and right feet (See Fig. 1-B). We used a total
of four different colors: orange, yellow, green, and red. We
used a standard blob tracking technique from the ROS cmvi-
sion package on the recorded RGB data to track the feet of
the performers.

We then defined two types of task-level events based on
these positions. The first type of event was the point in time
when a person began to raise their leg from the ground.
The second type of event was the point in time when a leg
reached its maximum height. As a result, a total of four types
of events occurred (two for each leg).

To measure the synchronous and asynchronous actions
from these events, we developed a method based on the work
by Quian Quiroga et al. (Quiroga, Kreuz, and Grassberger
2002), which considers multiple types of task-level events
together. Our method is more accurate than other methods
from the literature, which take a single type of event for
the measurement of synchrony. A detailed description of
our method can be found in Iqbal and Riek (Iqbal and Riek
2014a; 2014b).

For our method, first we express the events associated
with each person with a time series, measure the pairwise
synchronization index involving a single type of event, and
finally measure the overall pairwise synchronization index
while taking multiple types of events together. To explain
this mathematically, suppose, xn and yn are the two time

Figure 2: A) The expected synchronization indices over time
of our experimental scenarios in an ideal setting. B) Mea-
sured synchronization indices using our method.

series, where n = 1, . . . , N (N samples). For each event
type ei ∈ E, mx(ei) and my(ei) are the number of events
occurring in x and y respectively, where E is the set of all
events. Now, for each event type ei ∈ E, we calculate the
pairwise synchronization index (Q(ei)). Then, the overall
pairwise synchronization index (Q) considering all events is
calculated as:

∀ei ∈ E : Q =

∑
[Q(ei)× [mx(ei) +my(ei)]]∑

[mx(ei) +my(ei)]
(1)

Results
The synchronization indices for these four experimental sce-
narios are presented in Fig. 2-A. We used a sliding window
of five seconds for this experiment.

We expected to see a high value for a synchronization in-
dex for the entire duration of a session for Scenario 1, and a
value of zero for Scenario 2. For Scenario 3, we expected to
see our measured synchronization index decrease beginning
around seven seconds to a value of zero at 12 seconds, and
increase again at about 20 seconds. For Scenario 4, we ex-
pected similar results, however in reverse order. From Fig. 2-
B, one can see that the measured synchronization indices
over time reasonably match what we expected.

Discussion
Our work addresses the problems of detecting multiple task-
level events and measuring the synchrony of a human-robot
team while both the humans and robots are in motion. Re-
sults of this study suggest that despite the difficulties a
robot experiences in recognizing high-level group tasks, our
method is capable of detecting these task-level events and
measuring synchrony successfully in scenarios involving
movement.

This work is directly applicable to a number of fields,
including HRI, social signal processing, and artificial in-
telligence. In addition, this work may directly support re-
searchers exploring human-robot fluency, a first step in en-
abling the automatic interpretation of synchronized human-
robot interaction, including gesture mimicry or non-verbal
expression. Moving forward, we aim to apply this research
toward the development of real-time robotic systems with
the capability of understanding high-level group behavior to
inform more appropriate actions in HSEs.
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